Định nghĩa và các ứng dụng cơ bản Thuyết_tương_đối_rộng

Một số nét khái quát ở phần trước chứa mọi thông tin cần thiết để miêu tả thuyết tương đối rộng, các tính chất quan trọng của nó, những hệ quả chủ yếu và việc ứng dụng lý thuyết đề xây dựng các mô hình vật lý.

Định nghĩa và các tính chất cơ bản

Thuyết tương đối tổng quát là lý thuyết mêtric về tương tác hấp dẫn. Phương trình nền tảng của lý thuyết là phương trình trường Einstein, trong đó liên hệ giữa hình học của đa tạp tựa Riemann bốn chiều của không thời gian với năng lượng và động lượng chứa trong không thời gian đó.[36] Những quá trình hiện tượng trong cơ học cổ điển được gán cho nguyên nhân lực hấp dẫn tác dụng (như vật rơi tụ do, chuyển động trên quỹ đạo của các hành tinh, và quỹ đạo của các vệ tinh nhân tạo), tương ứng với chuyển động quán tính trong hình học cong của không thời gian trong thuyết tương đối rộng; không có lực hấp dẫn làm lệch quỹ đạo chuyển động của vật khỏi đường thẳng. Thay vào đó, lực hấp dẫn là do sự thay đổi tính chất của không thời gian, dẫn đến làm thay đổi quỹ đạo của vật trở thành đường "ngắn nhất" có thể mà vật sẽ tự nhiên chuyển động theo (hay đường trắc địa trong hình học vi phân).[37] Còn nguồn gốc độ cong của không thời gian là do năng lượng và động lượng của vật chất. Như nhà vật lý John Archibald Wheeler phát biểu, không thời gian nói cho vật chất cách chuyển động; vật chất nói cho không thời gian cong như thế nào.[38]

Khi mà thuyết tương đối thay thế năng hấp dẫn vô hướng của vật lý cổ điển thành tenxơ đối xứng hạng hai, thì đồng thời tenxơ này sẽ thu về trường hợp giới hạn cổ điển trong những điều kiện xác định. Đối với trường hấp dẫn yếu và chuyển động có vận tốc tương đối chậm so với tốc độ ánh sáng, lý thuyết cho kết quả tiên đoán trùng với tiên đoán của định luật vạn vật hấp dẫn Newton.[39]

Được xây dựng trên công cụ tenxơ, thuyết tương đối tổng quát thể hiện tính hiệp biến tổng quát: mỗi định luật của nó và hơn nữa các định luật thiết lập trên khuôn khổ tương đối tính tổng quát—sẽ có dạng phương trình như nhau trong mọi hệ tọa độ.[40] Căn bản hơn, lý thuyết không chứa bất kỳ một cấu trúc hình học cơ sở bất biến nào, hay thuyết tương đối rộng có đặc tính độc lập với phông cơ sở không thời gian (ứng với mỗi sự phân bố vật chất và năng lượng thì lại có một dạng hình học không thời gian khác nhau). Nó cũng thỏa mãn điều kiện chặt chẽ của nguyên lý tương đối tổng quát, tức là mọi định luật vật lý phải như nhau đối với mọi quan sát viên.[41] Trên cục bộ, như đòi hỏi của nguyên lý tương đương, không thời gian cong trở thành không thời gian Minkowski, và các định luật vật lý tuân theo bất biến Lorentz cục bộ.[42]

Cơ sở cho mô hình vật lý

Khái niệm cốt lõi trong mô hình vật lý tương đối tính tổng quát đó là tìm nghiệm của phương trình trường Einstein. Khi có phương trình Einstein và những phương trình hay điều kiện giới hạn cụ thể khác về tính chất của vật chất (như phương trình trạng thái, hoặc giả định về tính đối xứng của không thời gian, hoặc phương trình điều kiện biên, điều kiện ban đầu) thì nghiệm của phương trình sẽ là một đa tạp tựa Riemann (thông thường đa tạp này được xác định bởi tenxơ mêtric theo những hệ tọa độ đặc biệt), và trường vật chất cụ thể xác định trên đa tạp đó. Vật chất cũng phải thỏa mãn bất kỳ một điều kiện phụ nào của các phương trình khác mô tả tính chất của nó. Hay ngắn gọn, mỗi nghiệm là một mô hình vật lý thỏa mãn các định luật tương đối tính tổng quát cũng như các định luật vật lý khác chi phối sự có mặt của vật chất.[43]

Phương trình trường Einstein là hệ phương trình vi phân riêng phần phi tuyến cho những kết quả đáng tin cậy, do vậy rất khó để tìm được nghiệm chính xác.[44] Tuy vậy, các nhà vật lý đã giải được một số nghiệm chính xác, mặc dầu chỉ có vài ba nghiệm có ý nghĩa vật lý trực tiếp.[45] Những nghiệm chính xác nổi tiếng nhất, và cũng có nhiều ứng dụng trong vật lý thực nghiệm đó là: mêtric Schwarzschild, mêtric Reissner–Nordström và mêtric Kerr, chúng là các nghiệm của phương trình chân không Einstein và mỗi nghiệm tương ứng với một kiểu lỗ đen;[46]mêtric Friedmann–Lemaître–Robertson–Walker và "vũ trụ de Sitter", mỗi loại miêu tả một vũ trụ có tính động lực.[47] Những nghiệm chính xác hấp dẫn về mặt lý thuyết bao gồm "vũ trụ Gödel" (mở ra khả năng kỳ lạ cho phép du hành ngược thời gian trong không thời gian cong), "nghiệm sóng-pp" cho sóng hấp dẫn, "không gian Taub-NUT" (mô hình vũ trụ đồng nhất, nhưng phi đẳng hướng), và "không gian phản de Sitter" (mà gần đây trở lên quan trọng trong "phỏng đoán Maldacena" của lý thuyết dây).[48]

Do rất khó để tìm được nghiệm chính xác, các nhà vật lý đã tìm cách giải phương trình trường Einstein bằng phương pháp "tích phân số" trên máy tính, hoặc xét những nhiễu loạn nhỏ trong nghiệm chính xác. Trong lĩnh vực mô phỏng lý thuyết bằng máy tính, người ta sử dụng các siêu máy tính để mô phỏng hình học của không thời gian và giải phương trình Einstein cho những tình huống quan trọng như sự va chạm và sáp nhập hai lỗ đen hay cấu trúc của vũ trụ trên khoảng cách lớn.[49] Đặc biệt, phương pháp này có thể áp dụng cho một hệ bất kỳ nếu khả năng tính toán của siêu máy tính cho phép, và có thể tiếp cận được những câu hỏi căn bản như điểm kỳ dị hấp dẫn. Chúng ta có thể tìm những nghiệm xấp xỉ bằng lý thuyết nhiễu loạn như "tuyến tính hóa hấp dẫn"[50] và phương pháp tổng quát hóa của nó "khai triển hậu Newton", cả hai phương pháp này đều do Einstein phát triển. Phương pháp sau cung cấp cách tiếp cận có hệ thống nhằm giải ra hình học không thời gian với sự phân bố vật chất chuyển động chậm so với tốc độ ánh sáng. Phương pháp khai triển chứa các chuỗi số hạng; với số hạng thứ nhất đại diện cho đóng góp của hấp dẫn Newton, trong khi những số hạng tiếp sau thể hiện những hiệu chỉnh nhỏ hơn của lý thuyết Newton từ thuyết tương đối tổng quát.[51] Phương pháp mở rộng của phương pháp này gọi là "hình thức tham số hóa hậu Newton", cho phép so sánh một cách định lượng giữa những tiên đoán của thuyết tương đối rộng với những lý thuyết thay thế phi lượng tử khác.[52]

  • Nghiệm Schwarzchild: miêu tả không thời gian tĩnh có tính đối xứng cầu, bên ngoài bán kính Schwarzchild. Nó là nghiệm của phương trình chân không với T μ ν = 0 {\displaystyle T_{\mu \nu }{}=0}
Trong hệ tọa độ cầu x μ → ( c t , r , θ , ϕ ) {\displaystyle x^{\mu }\rightarrow (ct,r,\theta ,\phi )\,} sử dụng dấu mêtric (-, +, +, +), mêtric Schwarzchild là [53] d s 2 = c 2 d τ 2 = − ( 1 − r s r ) c 2 d t 2 + ( 1 − r s r ) − 1 d r 2 + r 2 ( d θ 2 + sin 2 ⁡ θ d φ 2 ) , {\displaystyle ds^{2}=c^{2}{d\tau }^{2}=-\left(1-{\frac {r_{s}}{r}}\right)c^{2}dt^{2}+\left(1-{\frac {r_{s}}{r}}\right)^{-1}dr^{2}+r^{2}\left(d\theta ^{2}+\sin ^{2}\theta \,d\varphi ^{2}\right),} với
  1. τ là thời gian riêng (đo bởi đồng hồ gắn cùng với hạt thử di chuyển trên tuyến thế giới kiểu thời gian)
  2. t là tọa độ thời gian (đo bởi một đồng hồ đứng yên nằm rất xa so với nguồn hấp dẫn),
  3. r là tọa độ xuyên tâm (đo bằng chu vi đường tròn chia cho 2π, các đường tròn nằm trên mặt cầu có tâm tại nguồn hấp dẫn),
  4. θ là độ dư vĩ (tính từ cực bắc, đơn vị radian),
  5. φ là kinh độ (radian), và
  6. rs là bán kính Schwarzschild của nguồn hấp dẫn, nó là hệ số tỷ lệ liên hệ với khối lượng M của "nguồn hấp dẫn không có điện tích và không quay" và rs = 2GM/c2.[54]
hay dạng ma trận của mêtric g μ ν = [ − ( 1 − 2 G M c 2 r ) 0 0 0 0 ( 1 − 2 G M c 2 r ) − 1 0 0 0 0 r 2 0 0 0 0 r 2 sin 2 ⁡ θ ] .   {\displaystyle g_{\mu \nu }={\begin{bmatrix}-\left(1-{\frac {2GM}{c^{2}r}}\right)&0&0&0\\0&\left(1-{\frac {2GM}{c^{2}r}}\right)^{-1}&0&0\\0&0&r^{2}&0\\0&0&0&r^{2}\sin ^{2}\theta \end{bmatrix}}.\ } Ta thấy khi hạt thử nằm rất xa nguồn hấp dẫn r → ∞ {\displaystyle r\to \infty } hoặc khi không có nguồn hấp dẫn M = 0 {\displaystyle M=0} thì mêtric Schwarzschild g μ ν {\displaystyle g_{\mu \nu }} trở thành mêtric Minkowski η μ ν {\displaystyle \eta _{\mu \nu }} sau khi chuyển từ tọa độ cầu sang tọa độ (ct, x, y, z).Tỷ số rs/r là rất nhỏ, đối với Mặt Trời có bán kính Schwarzschild xấp xỉ 3 km, trong khi nó có bán kính gần 700.000 km. Tỷ số này sẽ tương đối lớn đối với lỗ đen và sao neutron. Ta thấy tại r = rs thì mêtric trở lên kỳ dị (còn gọi là chân trời sự kiện), thực ra đây là kỳ dị do chúng ta sử dụng hệ tọa độ cầu chứ không hẳn là kỳ dị thực. Khi lựa chọn hệ tọa độ phù hợp, kỳ dị này biến mất và chỉ có r = 0 mới là điểm kỳ dị vật lý.

Tài liệu tham khảo

WikiPedia: Thuyết_tương_đối_rộng http://www.soso.ch/wissen/hist/SRT/E-1907.pdf http://books.google.com/books?id=yLy4b61rfPwC http://books.google.com/books?id=yLy4b61rfPwC&pg=P... http://www.mathpages.com/rr/rrtoc.htm http://www.nature.com/news/einstein-s-gravitationa... http://preposterousuniverse.com/grnotes/ http://www.rafimoor.com/english/GRE.htm http://www.youtube.com/watch?v=hbmf0bB38h0&feature... http://www.zweigmedia.com/diff_geom/tc.html http://geo600.aei.mpg.de/